Thermal to Visible Face Recognition

نویسندگان

  • Jonghyun Choi
  • Shuowen Hu
  • S. Susan Young
  • Larry S. Davis
چکیده

In low light conditions, visible light face identification is infeasible due to the lack of illumination. For nighttime surveillance, thermal imaging is commonly used because of the intrinsic emissivity of thermal radiation from the human body. However, matching thermal images of faces acquired at nighttime to the predominantly visible light face imagery in existing government databases and watch lists is a challenging task. The difficulty arises from the significant difference between the face’s thermal signature and its visible signature (i.e. the modality gap). To match the thermal face to the visible face acquired by the two different modalities, we applied face recognition algorithms that reduce the modality gap in each step of face identification, from low-level analysis to machine learning techniques. Specifically, partial least squares-discriminant analysis (PLS-DA) based approaches were used to correlate the thermal face signatures to the visible face signatures, yielding a thermal-to-visible face identification rate of 49.9%. While this work makes progress for thermal-to-visible face recognition, more efforts need to be devoted to solving this difficult task. Successful development of a thermal-to-visible face recognition system would significantly enhance the Nation’s nighttime surveillance capabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Cross Polarimetric Thermal-to-visible Face Recognition

In this paper, we present a deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. Polarization state information of thermal faces provides the missing textural and geometrics details in the thermal face imagery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages r...

متن کامل

Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems

The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and clas...

متن کامل

Thermal-to-visible face recognition using partial least squares.

Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We a...

متن کامل

Face Recognition under Pose and Expresivity Variation Using Thermal and Visible Images

Many existing works in face recognition are based solely on visible images. The use of bimodal systems based on visible and thermal images is seldom reported in face recognition, despite its advantage of combining the discriminative power of both modalities, under expressions or pose variations. In this paper, we investigate the combined advantages of thermal and visible face recognition on a P...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011